Reactive Black Removal by using Electrocoagulation Techniques: An Response Surface Methodology Optimization and Genetic Algorithm Modelling Approach

Author:

Manikandan S,Saraswathi R

Abstract

<p>The dye wastewater discharge from the textile industries mainly affects the aquatic environment. Hence, the treatment of this wastewater is essential for a pollutant-free environment. The purpose of this research is to optimize the dye removal efficiency for process influencing independent variables such as pH, electrolysis time (ET), and current density (CD) by using Box-Behnken design (BBD) optimization and Genetic Algorithm (GA) modelling. The electrocoagulation treatment technique was used to treat the synthetically prepared Reactive Black dye solution under batch mode potentiometric operations. The percentage of error for the BBD optimization was significantly greater than for the GA modelling results. The optimum factors determined by GA modelling were CD-59.11 mA/cm<sup>2</sup>, ET-24.17 minutes, and pH-8.4. At this moment, the experimental and predicted dye removal efficiencies were found to be 96.25% and 98.26%, respectively. The most and least predominant factors found by the beta coefficient were ET and pH respectively. The outcome of this research shows GA modeling is a better tool for predicting dye removal efficiencies as well as process influencing factors.</p>

Publisher

The Korean Electrochemical Society - English Journal

Subject

Electrochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3