The Evolving Landscape of Oil and Gas Chemicals: Convergence of Artificial Intelligence and Chemical-Enhanced Oil Recovery in the Energy Transition Toward Sustainable Energy Systems and Net-Zero Emissions

Author:

Bigdeli AlirezaORCID,Delshad MojdehORCID

Abstract

Chemical-enhanced oil recovery (EOR) is a field of study that can gain significantly from artificial intelligence (AI), addressing uncertainties such as mobility control, interfacial tension reduction, wettability alteration, and emulsifications. The primary objective of this paper is to introduce an integrated framework for AI and chemical EOR for energy harvest operations. Central emphasis is placed on the energy transition, with the aim of expediting the development of cleaner energy harvesting systems and attaining the goal of net-zero emission. To do so, we present how the energy transition is changing the manufacturing of the chemicals for EOR application. For this, the uncertainty associated with materials' design and critical role of the simulators for transferring the laboratory experiences into full-field implementations is discussed. The concept of digitalization and its impact on energy companies are highlighted. The role of digital twin in simulators integration is discussed, emphasizing how increased data access can help design more tolerant chemicals for harsh reservoir environments using real-time data. Also, we discuss how the chemical suppliers, research institutes, startups, and field operators can benefit from self-leaning and robotic laboratories for chemicals manufacturing. Moreover, this paper explores how including AI perspectives can improve our understanding of developing chemical formulations by blending hybrid capabilities. This approach contributes to making energy production more sustainable and aligning with the goal of zero emissions. A workflow is presented to demonstrate how the integration of AI and chemical EOR can be used for both hydrocarbon production and other energy transition operations, such as carbon capture, utilization and storage, hydrogen storage, and geothermal reservoirs. The outcome of this paper stands as a pioneering effort that uniquely addresses these challenges for both academia and the industry and can open many additional doors and identify topics requiring further investigations.

Publisher

BON VIEW PUBLISHING PTE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3