General Problem-Solving Ability in Natural Systems as a Model for Computation

Author:

Williams Andy EORCID

Abstract

Natural systems have demonstrated the ability to solve a wide range of adaptive problems as well as the ability to self-assemble in a self-sustaining way that enables them to exponentially increase impact on outcomes related to those problems. In the case of photosynthesis nature solved the problem of harnessing the energy in sunlight and then leveraged self-assembling and self-sustaining processes so that exponentially increasing impact on that problem is reliably achievable. Rather than having to budget a given amount of resources to create a mature tree, where those resources might not be reliably available, tree seedlings self-assemble in a self-sustaining way from very few resources to grow from having the capability of photosynthesis accompanying a single leaf, to the capability of photosynthesis accompanying what might be millions of leaves. If the patterns underlying this adaptive problem-solving could be abstracted so that they are generally applicable, they might be applied to social and other problems occurring at scales that currently are not reliably solvable. One is the Sustainable Development Goals (SDGs) funding gap. The funding believed to be required to address the SDGs is difficult to estimate, and may be anywhere between $2 trillion and $6 trillion USD per year. However, bridging the gap between the funding required to meet these goals and the funding available to do so is universally acknowledged to be a difficult and unsolved problem. This paper explores how abstracting the pattern for general problem-solving ability that nature has used to solve the problem of exponentially increasing impact on collective problems, and that nature has proven to be effective for billions of years, might be reused to solve “wicked problems” from implementing an Artificial General Intelligence (AGI) to funding sustainable development at the scale required to transform Africa and the world.

Publisher

Center for Open Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3