Natural Language Processing (NLP) in Qualitative Public Health Research: A Proof of Concept Study

Author:

Leeson William1,Resnick Adam1,Alexander Daniel1,Rovers John2ORCID

Affiliation:

1. College of Arts & Sciences, Drake University, Des Moines, IA, USA

2. College of Pharmacy & Health Sciences, Drake University, Des Moines, IA, USA

Abstract

Qualitative data-analysis methods provide thick, rich descriptions of subjects’ thoughts, feelings, and lived experiences but may be time-consuming, labor-intensive, or prone to bias. Natural language processing (NLP) is a machine learning technique from computer science that uses algorithms to analyze textual data. NLP allows processing of large amounts of data almost instantaneously. As researchers become conversant with NLP, it is becoming more frequently employed outside of computer science and shows promise as a tool to analyze qualitative data in public health. This is a proof of concept paper to evaluate the potential of NLP to analyze qualitative data. Specifically, we ask if NLP can support conventional qualitative analysis, and if so, what its role is. We compared a qualitative method of open coding with two forms of NLP, Topic Modeling, and Word2Vec to analyze transcripts from interviews conducted in rural Belize querying men about their health needs. All three methods returned a series of terms that captured ideas and concepts in subjects’ responses to interview questions. Open coding returned 5–10 words or short phrases for each question. Topic Modeling returned a series of word-probability pairs that quantified how well a word captured the topic of a response. Word2Vec returned a list of words for each interview question ordered by which words were predicted to best capture the meaning of the passage. For most interview questions, all three methods returned conceptually similar results. NLP may be a useful adjunct to qualitative analysis. NLP may be performed after data have undergone open coding as a check on the accuracy of the codes. Alternatively, researchers can perform NLP prior to open coding and use the results to guide their creation of their codebook.

Funder

Nelson Pressing Global Issues Grant,

Publisher

SAGE Publications

Subject

Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3