Latent Code Identification (LACOID): A Machine Learning-Based Integrative Framework [and Open-Source Software] to Classify Big Textual Data, Rebuild Contextualized/Unaltered Meanings, and Avoid Aggregation Bias

Author:

González Canché Manuel S.1ORCID

Affiliation:

1. The University of Pennsylvania, Philadelphia, USA

Abstract

Labeling or classifying textual data and qualitative evidence is an expensive and consequential challenge. The rigor and consistency behind the construction of these labels ultimately shape research findings and conclusions. A multifaceted methodological conundrum to address this challenge is the need for human reasoning for classification that leads to deeper and more nuanced understandings; however, this same manual human classification comes with the well-documented increase in classification inconsistencies and errors, particularly when dealing with vast amounts of documents and teams of coders. An alternative to human coding consists of machine learning-assisted techniques. These data science and visualization techniques offer tools for data classification that are cost-effective and consistent but are prone to losing participants’ meanings or voices for two main reasons: (a) these classifications typically aggregate all texts configuring each input file (i.e., each interview transcript) into a single topic or code and (b) these words configuring texts are analyzed outside of their original contexts. To address this challenge and analytic conundrum, we present an analytic framework and software tool, that addresses the following question: How to classify vast amounts of qualitative evidence effectively and efficiently without losing context or the original voices of our research participants and while leveraging the nuances that human reasoning bring to the qualitative and mixed methods analytic tables? This framework mirrors the line-by-line coding employed in human/manual code identification but relying on machine learning to classify texts in minutes rather than months. The resulting outputs provide complete transparency of the classification process and aid to recreate the contextualized, original, and unaltered meanings embedded in the input documents, as provided by our participants. We offer access to the database ( González Canché, 2022e ) and software required ( González Canché, 2022a , Mac https://cutt.ly/jc7n3OT , and Windows https://cutt.ly/wc7nNKF ) to replicate the analyses. We hope this opportunity to become familiar with the analytic framework and software, may result in expanded access of data science tools to analyze qualitative evidence (see also González Canché 2022b , 2022c , 2022d , for related no-code data science applications to classify and analyze qualitative and textual data dynamically).

Funder

Spencer Foundation

National Academy of Education

SAGE OCEAN

Publisher

SAGE Publications

Subject

Education

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3