Author:
White D L,Mazurkiewicz J E,Barrnett R J
Abstract
The presence of Fe(CN)6(-4) provides sequential, one-electron reduction pathways for OSO4. An equilibrium is established containing OSO4, Fe(CN)6(-4), Fe(CN)6(-3), OSO2(OH)4(-4), and labile cyano-bridged OS-Fe species containing Os in nominal oxidation states of VIII, VII, and VI. These osmium complexes are chelated by appropriately placed donor atoms in the macromolecular tissue matrix, and chelation facilitates the reduction of osmium in situ to lower oxidation states (predominantly IV) that are relatively nonlabile. The greater reactivity and concentration of the Os(VII and VI) intermediates in this system leads to more Os deposition than OsO4 alone; the chelation is responsible for the immobilization of Os and the observed staining pattern in electron micrographs. Chemical data from model systems and electron micrographs of tissue are presented in support of this mechanism.
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献