Politics Go “Viral”: A Computational Text Analysis of the Public Attribution and Attitude Regarding the COVID-19 Crisis and Governmental Responses on Twitter

Author:

Zhang Weilu1ORCID,Hu Lingshu2ORCID,Park Jihye3ORCID

Affiliation:

1. School of Journalism, University of Missouri, Columbia

2. The Williams School of Commerce, Economics, and Politics, Washington and Lee University

3. Communication Department, College of Art and Science, University of Missouri, Columbia

Abstract

The U.S. confronts an unprecedented public health crisis, the COVID-19 pandemic, in the presidential election year in 2020. In such a compound situation, a real-time dynamic examination of how the general public ascribe the crisis responsibilities taking account to their political ideologies is helpful for developing effective strategies to manage the crisis and diminish hostility toward particular groups caused by polarization. Social media, such as Twitter, provide platforms for the public’s COVID-related discourse to form, accumulate, and visibly present. Meanwhile, those features also make social media a window to monitor the public responses in real-time. This research conducted a computational text analysis of 2,918,376 tweets sent by 829,686 different U.S. users regarding COVID-19 from January 24 to May 25, 2020. Results indicate that the public’s crisis attribution and attitude toward governmental crisis responses are driven by their political identities. One crisis factor identified by this study (i.e., threat level) also affects the public’s attribution and attitude polarization. Additionally, we note that pandemic fatigue was identified in our findings as early as in March 2020. This study has theoretical, practical, and methodological implications informing further health communication in a heated political environment.

Publisher

SAGE Publications

Subject

Law,Library and Information Sciences,Computer Science Applications,General Social Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3