Distilling Issue Cycles From Large Databases: A Time-Series Analysis of Terrorism and Media in Africa

Author:

Jünger Jakob1,Gärtner Chantal1

Affiliation:

1. University of Greifswald, Germany

Abstract

Analyzing issue cycles usually begins with observing selected events and then tracking the course of media coverage. This approach collapses when the events of interest are hidden, overlain, or even distorted by extensive coverage of other events. One such complicated case is news about terrorism in Africa. While previous studies have started from single media hypes, we propose modeling the general pattern of such issue cycles with distributed lag models on a large-scale data basis. In order to assess the utility of distributed lag models, two basic principles of issue cycles are derived from theory and empirically tested. Furthermore, using the Global Database of Events, Language, and Tone, we evaluate the usefulness of automated methods for news research. Although the data are quite noisy, automated content analysis combined with distributed lag models is a promising approach for studying issue cycles. The model can be used to visualize issue cycles. In the case of news about terrorism in Africa, we found a sudden increase in coverage, followed by a second local maximum after a few weeks.

Publisher

SAGE Publications

Subject

Law,Library and Information Sciences,Computer Science Applications,General Social Sciences

Reference70 articles.

1. Allansson M., Croicu M. (2017). UCDP one-sided violence codebook (Version 17.1) [Code book]. http://ucdp.uu.se/downloads/nsos/ucdp-onesided-171.pdf

2. Almon S. (1965). Distributed lag between capital appropriations and expenditures. Econometrica, 33, 178–196. https://doi.org/10.2307/1911894

3. Arva B., Beieler J., Fisher B., Lara G., Schrodt P. A., Song W., Sowell M., Stehle S. (2013). Improving forecasts of international events of interest. http://parusanalytics.com/eventdata/papers.dir/Arva.etal_EPSA_13.pdf

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3