Potential Biases in Big Data: Omitted Voices on Social Media

Author:

Hargittai Eszter1

Affiliation:

1. University of Zurich, Zurich, Switzerland

Abstract

While big data offer exciting opportunities to address questions about social behavior, studies must not abandon traditionally important considerations of social science research such as data representativeness and sampling biases. Many big data studies rely on traces of people’s behavior on social media platforms such as opinions expressed through Twitter posts. How representative are such data? Whose voices are most likely to show up on such sites? Analyzing survey data about a national sample of American adults’ social network site usage, this article examines what user characteristics are associated with the adoption of such sites. Findings suggest that several sociodemographic factors relate to who adopts such sites. Those of higher socioeconomic status are more likely to be on several platforms suggesting that big data derived from social media tend to oversample the views of more privileged people. Additionally, Internet skills are related to using such sites, again showing that opinions visible on these sites do not represent all types of people equally. The article cautions against relying on content from such sites as the sole basis of data to avoid disproportionately ignoring the perspectives of the less privileged. Whether business interests or policy considerations, it is important that decisions that concern the whole population are not based on the results of analyses that favor the opinions of those who are already better off.

Publisher

SAGE Publications

Subject

Law,Library and Information Sciences,Computer Science Applications,General Social Sciences

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linking survey and Facebook data: mechanisms of consent and linkage;International Journal of Social Research Methodology;2024-09-09

2. How low-credibility gossip information impact the users opinions in social network;Journal of Computational Methods in Sciences and Engineering;2024-08-14

3. Tipping points in coupled human–environment system models: a review;Earth System Dynamics;2024-07-30

4. Assessing Perceived Landscape Change from Opportunistic Spatiotemporal Occurrence Data;Land;2024-07-19

5. Social media applications in biomedical research;Exploration of Digital Health Technologies;2024-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3