Using Google Trends Data to Learn More About Survey Participation

Author:

Gummer Tobias12ORCID,Oehrlein Anne-Sophie1ORCID

Affiliation:

1. GESIS Leibniz Institute for the Social Sciences, Mannheim, Germany

2. University of Mannheim, School of Social Sciences, Mannheim, Germany

Abstract

As response rates continue to decline, the need to learn more about the survey participation process remains an important task for survey researchers. Search engine data may be one possible source for learning about what information some potential respondents are looking up about a survey when they are making a participation decision. In the present study, we explored the potential of search engine data for learning about survey participation and how it can inform survey design decisions. We drew on freely available Google Trends (GT) data to learn about the use of Google Search with respect to our case study: participation in the Family Research and Demographic Analysis (FReDA) panel survey. Our results showed that some potential respondents were using Google Search to gather information on the FReDA survey. We also showed that the additional data obtained via GT can help survey researchers to discover topics of interest to respondents and geographically stratified search patterns. Moreover, we introduced different approaches for obtaining data via GT, discussed the challenges that come with these data, and closed with practical recommendations on how survey researchers might utilize GT data to learn about survey participation.

Funder

Bundesministerium für Bildung und Forschung

Publisher

SAGE Publications

Subject

Law,Library and Information Sciences,Computer Science Applications,General Social Sciences

Reference31 articles.

1. Explaining Rising Nonresponse Rates in Cross-Sectional Surveys

2. Predicting the Present with Google Trends

3. Cornesse C. (2020). The utility of auxiliary data for survey response modeling: Evidence from the German Internet Panel. Survey methods: Insights from the field. https://doi.org/10.13094/SMIF-2020-00008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3