Adaptive Self-Reflection as a Social Media Self-Effect: Insights from Computational Text Analyses of Self-Disclosures of Unreported Sexual Victimization in a Hashtag Campaign

Author:

Yeo Tien Ee Dominic1ORCID,Chu Tsz Hang2ORCID

Affiliation:

1. Department of Communication Studies, Hong Kong Baptist University, Hong Kong

2. Department of Journalism and Communication, Hong Kong Shue Yan University, Hong Kong

Abstract

Hashtag campaigns calling out sexual violence and rape myths offer a unique context for disclosing sexual victimization on social media. This study investigates the applicability of adaptive self-reflection as a potential self-effect from such public disclosures of unreported sexual victimization experiences by analyzing 92,583 tweets that invoked #WhyIDidntReport. A supervised machine learning classifier determined that 61.8% of the tweets were self-disclosures of sexual victimization. Linguistic Inquiry and Word Count (LIWC) analysis showed statistically significant differences in four psycholinguistic dimensions (greater use of past focus, cognitive processes, insight, and causation words) connected with reflective processing in tweets with self-disclosed sexual victimization compared to those without. Additionally, topic modeling and thematic analysis identified nine salient topics within the self-disclosing tweets, comprising three self-distanced representations (i.e., relatively abstract and insightful construals) of the unwanted experiences: (a) acknowledging one’s previously unacknowledged victimization, (b) reaffirming one’s rationale for not reporting, and (c) decrying invalidating response to one’s disclosure. Moving beyond reception effects and social support in extant research about social media as a coping tool, this study provides new empirical insights into the potential of social media to promote expressive meaning-making of upsetting and traumatic experiences in ways that support recovery and resilience.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3