Affiliation:
1. Amsterdam School of Communication Research (ASCoR), University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, the Netherlands
Abstract
Social scientists often study comments on YouTube to learn about people’s attitudes towards and experiences of online videos. However, not all YouTube comments are relevant in the sense that they reflect individuals’ thoughts about, or experiences of the content of a video or its artist/maker. Therefore, the present paper employs Supervised Machine Learning to automatically assess comments written in response to music videos in terms of their relevance. For those comments that are relevant, we also assess why they are relevant. Our results indicate that most YouTube comments are relevant (approx. 78%). Among those, most are relevant because they include a positive evaluation of the video, describe a viewer’s personal experience related to the video, or express a sense of community among the video viewers. We conclude that Supervised Machine Learning is a suitable method to find those YouTube comments that are relevant to scholars studying viewers’ reactions to online videos, and we present suggestions for scholars wanting to apply the same technique in their own projects.
Funder
Digital Communication Methods Lab
Subject
Law,Library and Information Sciences,Computer Science Applications,General Social Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献