Cutting Through the Comment Chaos: A Supervised Machine Learning Approach to Identifying Relevant YouTube Comments

Author:

Möller A. Marthe1ORCID,Vermeer Susan A. M.1ORCID,Baumgartner Susanne E.1ORCID

Affiliation:

1. Amsterdam School of Communication Research (ASCoR), University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, the Netherlands

Abstract

Social scientists often study comments on YouTube to learn about people’s attitudes towards and experiences of online videos. However, not all YouTube comments are relevant in the sense that they reflect individuals’ thoughts about, or experiences of the content of a video or its artist/maker. Therefore, the present paper employs Supervised Machine Learning to automatically assess comments written in response to music videos in terms of their relevance. For those comments that are relevant, we also assess why they are relevant. Our results indicate that most YouTube comments are relevant (approx. 78%). Among those, most are relevant because they include a positive evaluation of the video, describe a viewer’s personal experience related to the video, or express a sense of community among the video viewers. We conclude that Supervised Machine Learning is a suitable method to find those YouTube comments that are relevant to scholars studying viewers’ reactions to online videos, and we present suggestions for scholars wanting to apply the same technique in their own projects.

Funder

Digital Communication Methods Lab

Publisher

SAGE Publications

Subject

Law,Library and Information Sciences,Computer Science Applications,General Social Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3