Author:
Spirtes Peter,Glymour Clark
Abstract
Previous asymptotically correct algorithms for recovering causal structure from sample probabilities have been limited even in sparse causal graphs to a few variables. We describe an asymptotically correct algorithm whose complexity for fixed graph connectivity increases polynomially in the number of vertices, and may in practice recover sparse graphs with several hundred variables. From sample data with n = 20,000, an implementation of the algorithm on a DECStation 3100 recovers the edges in a linear version of the ALARM network with 37 vertices and 46 edges. Fewer than 8% of the undirected edges are incorrectly identified in the output. Without prior ordering information, the program also determines the direction of edges for the ALARM graph with an error rate of 14%. Processing time is less than 10 seconds. Keywords DAGS, Causal Modelling.
Subject
Law,Library and Information Sciences,Computer Science Applications,General Social Sciences
Cited by
469 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献