Increased Heme Oxygenase-1 Gene Expression in the Livers of Patients with Portal Hypertension Due to Severe Hepatic Cirrhosis

Author:

Matsumi M1,Takahashi T1,Fujii H1,Ohashi I1,Kaku R1,Nakatsuka H1,Shimizu H1,Morita K1,Hirakawa M1,Inagaki M2,Sadamori H2,Yagi T2,Tanaka N2,Akagi R3

Affiliation:

1. Department of Anaesthesiology and Resuscitation, Okayama University Medical School, Okayama, Japan

2. First Department of Surgery, Okayama University Medical School, Okayama, Japan

3. Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan

Abstract

Surgical bleeding associated with splanchnic hyperaemia due to portal hypertension complicates the anaesthetic management of hepatic transplantation. Although the mechanism(s) of portal hypertension are not fully understood, carbon monoxide, a product of the heme oxygenase (HO) reaction, is thought to be one of the endogenous vasodilators in the liver. In this study, the expression of mRNA encoding inducible HO isozyme (HO-1) in the livers of patients with portal hypertension undergoing hepatic transplantation was determined in comparison with those without portal hypertension. HO-1 mRNA levels were significantly greater in the portal hypertension group than in the group without portal hypertension. In contrast with HO-1, the gene expression of non-specific δ-aminolevulinate synthase (ALAS-N), which is down-regulated by heme in the liver, was the same in both groups. These results suggest that HO-1 is up-regulated through heme-independent stimuli according to the development of portal hypertension, and that induced HO-1 plays a pathophysiological role in portal hypertension through carbon monoxide production.

Publisher

SAGE Publications

Subject

Biochemistry, medical,Cell Biology,Biochemistry,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3