Verbal Working Memory, Long-Term Knowledge, and Statistical Learning

Author:

Saito Satoru1ORCID,Nakayama Masataka2,Tanida Yuki3

Affiliation:

1. Graduate School of Education, Kyoto University

2. Kokoro Research Center, Kyoto University

3. United Graduate School of Child Development, Osaka University

Abstract

Evidence supporting the idea that serial-order verbal working memory is underpinned by long-term knowledge has accumulated over more than half a century. Recent studies using natural-language statistics, artificial statistical-learning techniques, and the Hebb repetition paradigm have revealed multiple types of long-term knowledge underlying serial-order verbal working memory performance. These include (a) element-to-element association knowledge, which slowly accumulates through extensive exposure to an exemplar; (b) position–element knowledge, which is acquired through several encounters with an exemplar; and (c) whole-sequence knowledge, which is captured by the Hebb repetition paradigm and acquired rapidly with a few repetitions. Arguably, the first two are a basis for fluent and efficient language usage, and the third is a basis for vocabulary learning. Thus, statistical-learning mechanisms (and possibly episodic-learning mechanisms) may form the foundation of language acquisition and language processing, which characterize linguistic long-term knowledge for verbal working memory.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

General Psychology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3