How Can Deep Neural Networks Inform Theory in Psychological Science?

Author:

McGrath Sam Whitman12ORCID,Russin Jacob23,Pavlick Ellie34,Feiman Roman24

Affiliation:

1. Department of Philosophy, Brown University

2. Department of Cognitive and Psychological Sciences, Brown University

3. Department of Computer Science, Brown University

4. Program in Linguistics, Brown University

Abstract

Over the last decade, deep neural networks (DNNs) have transformed the state of the art in artificial intelligence. In domains such as language production and reasoning, long considered uniquely human abilities, contemporary models have proven capable of strikingly human-like performance. However, in contrast to classical symbolic models, neural networks can be inscrutable even to their designers, making it unclear what significance, if any, they have for theories of human cognition. Two extreme reactions are common. Neural network enthusiasts argue that, because the inner workings of DNNs do not seem to resemble any of the traditional constructs of psychological or linguistic theory, their success renders these theories obsolete and motivates a radical paradigm shift. Neural network skeptics instead take this inability to interpret DNNs in psychological terms to mean that their success is irrelevant to psychological science. In this article, we review recent work that suggests that the internal mechanisms of DNNs can, in fact, be interpreted in the functional terms characteristic of psychological explanations. We argue that this undermines the shared assumption of both extremes and opens the door for DNNs to inform theories of cognition and its development.

Publisher

SAGE Publications

Reference38 articles.

1. Deep Problems with Neural Network Models of Human Vision

2. Brown T. B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D. M., Wu J., Winter C. Amodei D. (2020). Language models are few-shot learners. arXiv. https://arxiv.org/abs/2005.14165v4

3. Black Boxes, or Unflattering Mirrors? Comparative Bias in the Science of Machine Behavior

4. Chen A., Shwartz-Ziv R., Cho K., Leavitt M. L., Saphra N. (2024). Sudden drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in MLMs. arXiv. https://doi.org/10.48550/arXiv.2309.07311

5. Elhage N., Nanda N., Olsson C., Henighan T., Joseph N., Mann B., Askell A., Bai Y., Chen A., Conerly T., DasSarma N., Drain D., Ganguli D., Hatfield-Dodds Z., Hernandez D., Jones A., Kernion J., Lovitt L., Ndousse K. Olah C. (2021). A mathematical framework for transformer circuits. Transformer Circuits Thread. https://transformer-circuits.pub/2021/framework/index.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3