Exploring public discourses about emerging technologies through statistical clustering of open-ended survey questions

Author:

Stoneman Paul1,Sturgis Patrick1,Allum Nick2

Affiliation:

1. University of Southampton, UK

2. University of Essex, UK

Abstract

The primary method by which social scientists describe public opinion about science and technology is to present frequencies from fixed response survey questions and to use multivariate statistical models to predict where different groups stand with regard to perceptions of risk and benefit. Such an approach requires measures of individual preference which can be aligned numerically in an ordinal or, preferably, a continuous manner along an underlying evaluative dimension – generally the standard 5- or 7-point attitude question. The key concern motivating the present paper is that, due to the low salience and “difficult” nature of science for members of the general public, it may not be sensible to require respondents to choose from amongst a small and predefined set of evaluative response categories. Here, we pursue a different methodological approach: the analysis of textual responses to “open-ended” questions, in which respondents are asked to state, in their own words, what they understand by the term “DNA.” To this textual data we apply the statistical clustering procedures encoded in the Alceste software package to detect and classify underlying discourse and narrative structures. We then examine the extent to which the classifications, thus derived, can aid our understanding of how the public develop and use “everyday” images of, and talk about, biomedicine to structure their evaluations of emerging technologies.

Publisher

SAGE Publications

Subject

Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Communication

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3