Affiliation:
1. Institute of Biology, NCSR “Demokritos”, Aghia Paraskevi, Attikis
2. Department of Biochemistry and Molecular Biology, Papanikolaou Research Center, Saint Savvas Hospital, Athens - Greece
Abstract
It has recently been established that most anticancer drugs act through the mechanism of apoptosis. It has also been clinically confirmed that drug combinations are more effective than single drugs and various chemotherapeutic strategies have therefore been developed. The experiments described here concern the induction of apoptosis with dimethylsulfoxide (DMSO), a substance with multiple activity especially as an inducer of differentiation, and interferon (IFN), a cytokine well known for its antiviral and antineoplastic effects; they are used alone or in combination. Apoptosis may be regulated at all levels of gene expression including the addition of the poly(A) tail to the 3’ end of mRNAs. Poly(A) polymerase (PAP) [EC.2.7.7.19], the enzyme that catalyzes the addition of the poly(A) tail to mRNAs, changes in the process of development, differentiation, transformation and apoptosis. In the present study the induction of HeLa cells to apoptosis (65%) with a DMSO/rIFN-α combination resulted in pronounced PAP dephosphorylation and activity reduction. HeLa cells induced to apoptosis (35%) with DMSO gave lower levels of PAP dephosphorylation and reduction of activity and cells induced to apoptosis (18%) with rIFN-α gave only limited PAP dephosphorylation and reduction of activity. The implications of these observations for chemotherapeutic drug action at the level of mRNA polyadenylation point to the possible use of PAP as a biological marker for the evaluation of this action.
Subject
Cancer Research,Clinical Biochemistry,Oncology,Pathology and Forensic Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献