Signaling through the IL-6-STAT3 Pathway Promotes Proteolytically-Active Macrophage Accumulation Necessary for Development of Small AAA

Author:

Patel Raj1ORCID,Hall SarahRose1,Lanford Hayes1,Ward Nicholas1,Grespin R. Tyler1,Figueroa Mario1,Mattia Victoria1,Xiong Ying2,Mukherjee Rupak2,Jones Jeffrey2ORCID,Ruddy Jean Marie1ORCID

Affiliation:

1. Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, USA

2. Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA

Abstract

Introduction Elevated interleukin-6 (IL-6) plasma levels have been associated with abdominal aortic aneurysm (AAA), but whether this cytokine plays a causative role in the degenerative remodeling or represents an effect from the inflammatory cascades initiated by infiltrating leukocytes remained unclear. This project aims to demonstrate that within the aortic wall, signaling from IL-6 through the STAT3 transcription factor is necessary for infiltration of proteolytically-active macrophages and development of small AAA. Methods Following measurement of baseline infrarenal aortic diameter (AoD, digital microscopy), C57Bl/6 and IL-6 knockout (IL-6KO) mice underwent AAA induction by application of peri-adventitial CaCl2 (0.5 M) +/− implantation of an osmotic mini-pump delivering IL-6 (4.36 µg/kg/day over 21 days). At the terminal procedure, AoDs were measured by digital microscopy and aortas harvested for immunoblot (pSTAT3/STAT3), matrix metalloproteinase (MMP) quantification, or flow cytometric analysis of macrophage content. Plasma was collected for cytokine analysis. Results IL-6 infusion significantly increased the plasma IL-6 levels in C57Bl/6 and IL-6KO animals. The C57Bl/6 + CaCl2 group developed AAA (AoD >50% above baseline) but IL-6KO + CaCl2 did not. In the IL-6KO + IL-6+CaCl2 group, AAA developed to match that of C57Bl/6 + CaCl2 mice. STAT3 activity was significantly increased in animals with advanced stages of dilation (>40% from baseline), compared to those with ectasia (≤25%). Although cytokine profiles did not support T-cells or neutrophils as being active contributors in this stage of aortic remodeling, changes in the profile of elaborated MMPs suggested macrophage activity with a trend toward alternatively activated pathways. Flow cytometry confirmed significantly increased macrophage abundance specifically in animals with upregulated STAT3 activity and advanced aortic dilation. Conclusion In this murine model of AAA, progressive dilation to development of true AAA was only accomplished when IL-6 signaling upregulated STAT3 activity to effect accumulation of proteolytically-active macrophages. This pathway warrants further investigation to identify potential therapeutic avenues to abrogate growth of small AAA.

Funder

NIH K08 Mentored Clinical Scientist Career Development Award

NIH T32 Institutional Training Grant

VA Merit Award

Society of Vascular Surgery

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3