Indocyanine-based near-infrared lymphography for real-time detection of lymphatics in a cat with multiple mast cell tumours

Author:

Arz Raphael1ORCID,Seehusen Frauke2,Meier Valeria S34ORCID,Nolff Mirja C1

Affiliation:

1. Clinic for Small Animal Surgery, Department for Small Animals, Vetsuisse Faculty, University of Zurich, Switzerland

2. Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland

3. Clinic for Oncology and Radiation Oncology, Department for Small Animals, Vetsuisse Faculty, University of Zurich, Switzerland

4. Department of Physics, University of Zurich, Switzerland

Abstract

Case summary An 11-year-old female domestic shorthair cat was presented with cutaneous mast cell tumours (MCTs) localised at the right temporal region, the left buccal region and on the third digit of the right thoracic limb. Staging was negative and locoregional lymph nodes appeared normal, based on clinical findings. During surgery, real-time indocyanine green (ICG)-based lymphography was performed to detect the cutaneous draining pattern of all the primary MCTs. ICG was injected intracutaneously in four quadrants around each tumour, and a clear lymphogram was visible shortly after injection. Using near-infrared lymphography (NIR-L) for guidance, all lymphadenectomies were performed in 12 mins or less, with a maximal incision length of 3.5 cm. The smallest resected node was 0.9 cm in diameter. All MCTs were classified as low-grade cutaneous MCT. All four ICG-positive lymph nodes were considered premetastatic or metastatic. The only ICG-negative resected node was also negative for tumour cells. No complications related to NIR-L were recorded. Relevance and novel information This is the first description of NIR-L in a cat with MCT. Application was straightforward and ICG enrichment only occurred in the metastatic nodes, suggesting correct identification of lymphatic draining patterns. Of note, as previously described in dogs, we did detect nodal metastasis, despite low-grade primary tumours. The clinical relevance should be evaluated in future studies.

Publisher

SAGE Publications

Subject

Small Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3