Foam dressing and micropower vacuum dressing promote diabetic foot ulcer wound healing by activating the PI3K/AKT/mTOR pathway in rats

Author:

Chen Cunren1,Ou Qianying1,Chen Kaining1,Liang Changli1,Zeng Xiaocui1,Lin Danhong1,Lin Lu1ORCID

Affiliation:

1. Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, China

Abstract

Foam dressing (FD) and micropower vacuum dressing (MVD) have been applied in the treatment of diabetic foot ulcer (DFU). However, research about the mode of action on the efficacy of the two dressings is extremely rare. This study proposed to explore the mechanism involved in diabetic wound healing under FD or MVD treatment. Macroscopical study was performed to evaluate the effectiveness of FD and MVD on wound healing in a rat model of DFU. Morphological analysis in the wound skin tissue was conducted by hematoxylin and eosin staining. Meanwhile, inflammatory cytokines in serum were measured by enzyme linked immunosorbent assay. The protein expression of phosphatidylinositol 3 kinase, protein kinase B and mammalian target of rapamycin (PI3K/AKT/mTOR) and their phosphorylation levels were determined by western blotting. We found that wound healing in rats with DFU was enhanced with the application of FD and MVD. The therapeutic efficacy of FD was superior to MVD. Compared with diabetic foot group, the concentrations of inflammatory cytokines, tumor necrosis factor alpha, interleukin-1β and interleukin-6, were significantly down-regulated. Besides, the phosphorylation levels of PI3K, AKT and mTOR were up-regulated under FD or MVD treatment. We demonstrated that the treatment of FD and MVD effectively promoted the wound skin healing through activating the PI3K/AKT/mTOR pathway. Our research may provide a new idea for exploring the mode of action of dressing application in healing of DFU.

Funder

Hainan Province Clinical Medical Center

Hainan Provincial Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3