WE43 and WE43-T5 Mg alloys screws tested in-vitro cellular adhesion and differentiation assay and in-vivo histomorphologic analysis in an ovine model

Author:

Torroni Andrea1ORCID,Witek Lukasz2,Fahliogullari Hayat Pelin1ORCID,Bortoli Joao Paulo1,Ibrahim Amel1,Hacquebord Jacques1,Gupta Nikhil3,Coelho Paulo1

Affiliation:

1. New York University, New York, NY, USA

2. New York University College of Dentistry, New York, NY, USA

3. New York University Tandon School of Engineering, Brooklyn, NY, USA

Abstract

WE43 Mg alloy proved to be an ideal candidate for production of resorbable implants in both clinical and trial settings. In previous studies we tested biocompatibility and degradation properties of WE43 (as-cast) and artificially aged (WE43-T5) Mg alloys in a sheep model. Both alloys showed excellent biocompatibility with the as-cast, WE43, form showing increased degradability compared to the artificially aged, WE43-T5. In the present study, our group assessed the biological behavior and degradation pattern of the same alloys when implanted as endosteal implants in a sheep model. Twelve screws (3x15 mm) were evaluated, one screw per each composition was placed bi-cortically in the mandible of each animal with a titanium (2x12 mm) screw serving as an internal positive control. At 6 and 24 weeks histomorphological analysis was performed, at 6 weeks as cast, WE43, yielded a higher degradation rate, increased bone remodeling and osteolysis compared to the WE43-T5 alloy; however, at 24 weeks WE43-T5 showed higher degradation rate and increased bone remodeling than as-cast. In vitro assay of cell growth, adhesion and differentiation was also conducted to investigate possible mechanisms underlying the behavior expressed from the alloys in vivo. In conclusion WE43-T5 indicated bone/implant interaction properties that makes it more suitable for fabrication of endosteal bone screws.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3