Hydroxyapatite microporous bioceramics as vancomycin reservoir: Antibacterial efficiency and biocompatibility investigation

Author:

Parent Marianne1,Magnaudeix Amandine1,Delebassée Sylvie2,Sarre Elisabeth1,Champion Eric1,Viana Trecant Marylène1,Damia Chantal1

Affiliation:

1. Univ. Limoges, CNRS, ENSCI, SPCTS, UMR 7315, Limoges, France

2. Univ. Limoges, Laboratoire de Chimie des Substances Naturelles, Limoges, France

Abstract

Abstarct Infections after bone reconstructive surgery are a real therapeutic and economic issue for the modern health care system. As the pathogen (most often Staphylococcus aureus) is able to develop a biofilm inside the bone, local delivery of antibiotics is of interest since high drug concentrations would be delivered directly at the target place. In this context, this study evaluated a porous hydroxyapatite implant as biocompatible bone substitute and vancomycin-delivery system to prevent post-operative infections. A simple method of impregnation with optimised conditions insured a high antibiotic loading (up to 2.3 ± 0.3 mg/m2), with a complete in vitro release obtained within 1–5 days. Additionally, the bacteriostatic and bactericidal effects of vancomycin were retained after loading on hydroxyapatite, as demonstrated after challenge with a Staphylococcus aureus strain. Regarding the biocompatibility, a wound healing assay of pre-osteoblastic MC3T3-E1 cells exposed to various concentrations of vancomycin revealed a dose-dependent reduction in cell migration for antibiotic concentrations higher than 1 mg/mL. Meanwhile, cells were able to proliferate normally on vancomycin-loaded scaffolds, although cell initial adhesion was seriously impaired for scaffolds loaded with 2.3 mg/m2. Loaded scaffolds could be stored up to three months at room temperature without any degradation of the antibiotic. Together, these results demonstrate the efficacy of these hydroxyapatite bone substitutes for local delivery of vancomycin in the context of bone infection.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3