Endothelial Cell Seeding onto Various Biomaterials Causes Superoxide-induced Cell Death

Author:

Coyle Christian H.1,Mendralla Scott1,Lanasa Stephanie1,Kader Khalid N.2

Affiliation:

1. Cell and Synthetic Interface Engineering Laboratory Department of Biomedical Engineering, University of Iowa Iowa City, Iowa 52242, USA

2. Cell and Synthetic Interface Engineering Laboratory Department of Biomedical Engineering, University of Iowa Iowa City, Iowa 52242, USA,

Abstract

The seeding and/or in-growth of endothelial cells on a number of blood-contacting implants are a concern for both biomaterials and tissue engineering. While endothelialization has been viewed positively, owing to their ability to regulate both smooth muscle and blood, there is evidence which suggests that endothelial cells on a nonoptimized surface may be counterproductive. The present study describes the experimentation designed to elucidate the effect of culture substrate on intracellular superoxide (SO) levels, a marker for endothelial cell dysfunction. The adaptation of the use of dihydroethidium under physiologically relevant shearing conditions is also reported. The present study describes a standardized method for the use of dihydroethidium as a marker for intracellular oxidative stress under physiologic shear. Levels of hydrogen peroxide (oxidative stress producing agent) are optimized to a minimum of 60 μM (under static conditions) to allow for the detection of SO within the free radical scavenging environment. A flow rate of 24.4 mL/min is applied and found to produce physiologically relevant shear stress (8.2 dynes/cm2) within the system under study. Dihydroethidium is a useful marker for assessing intracellular oxidative stress in studies that require shear.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3