Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo

Author:

Guda Teja12,Walker John A1,Singleton Brian2,Hernandez Jesus2,Oh Daniel S3,Appleford Mark R2,Ong Joo L2,Wenke Joseph C1

Affiliation:

1. Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, TX, USA

2. Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA

3. Department of Orthopaedic Surgery, Columbia University Medical Center, New York, NY, USA

Abstract

To examine the effect of scaffold pore size on bone regeneration within hydroxyapatite scaffolds in large segmental defects, this study evaluated two porous interconnected architectures having similar porosity and strut thickness but different pore sizes. Using a 10 mm segmental rabbit radius defect model, a bilayer scaffold architecture mimicking the cortical-cancellous organization of bone (pore size 200 µm outer layer, 450 µm inner layer) was compared to a purely trabecular-like architecture (pore size 340 µm) and an untreated defect. Bone regeneration was measured using micro-computed tomography and histology after four and eight weeks of in vivo implantation, and the mechanical strength of the defect site after eight weeks’ implantation was assessed using flexural testing. Although both bilayer and trabecular architectures promoted bone growth, the trabecular scaffolds were observed to have more uniform new bone distribution within the scaffold interior at four weeks and greater bone regeneration overall after eight weeks’ implantation (149 ± 9 mm3 compared to 121 ± 8 mm3 in the bilayer and 66 ± 14 mm3 in the defect). Additionally, the trabecular scaffolds were observed to exhibit significantly greater flexural strength (124% increase) and toughness (388% increase) when compared to the empty defects after eight weeks’ implantation. It was concluded from this study that a larger uniform pore size led to greater functional bone regeneration over a longer implantation period for large segmental defects.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3