The clinical results of treating Kummell’s disease with mineralized collagen modified polymethyl methacrylate

Author:

Wang Xi1,Xu Jin2ORCID,Kou Jianming1,Tian Wei1,Gao Chong1,Cui Fuzhai34,Qiu Zhiye34

Affiliation:

1. Department of Orthopedics, Lianyungang Second People’s Hospital, Lianyungang, China

2. Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, China

3. School of Materials Science and Engineering, Tsinghua University, Beijing, China

4. R&D Department, Allgens Medical Technology Corporation, Beijing, China

Abstract

To investigate the clinical results of treating Kummell’s Disease by using mineralized collagen modified polymethyl methacrylate bone cement, 23 cases (23 vertebras) who sustained Kummell’s Disease treated with mineralized collagen modified polymethyl methacrylate bone cement from July 2017 to February 2019 were reviewed retrospectively. The visual analogue scale, vertebral body height, Cobb angle, CT values pre-operation and post-operation as well as incidence of complications were observed. All the patients were successfully followed up with an average period of 11.3 months (ranging from 6 to 12 months). The patients could ambulate on the second day after the operation. The visual analogue scale scores significantly decreased from two days after the operation to the last follow-up compared with that before the operation ( p < 0.05); the average vertebral height and local Cobb angle had significant recovery ( p < 0.05); the CT value of the treated vertebra significantly increased compared with that before the operation ( p < 0.05). Bone cement leakage occurred in one case, anterior edge leakage occurred in one case, and no clinical symptoms caused by bone cement leakage occurred. No re-fracture of the treated vertebral body or adjacent vertebral bodies were observed in the follow-ups. With good osteogenic activity and degradable absorption characteristics, mineralized collagen was compounded with the existing polymethyl methacrylate bone cement to reduce its strength in the vertebral body and enhance biocompatibility, the incidence of adjacent vertebral fractures and re-fractures within the injured vertebrae is significantly reduced, and good clinical results are obtained, which is worthy of popularization.

Funder

Jiangsu University clinical medicine science and Technology Development Fund

Research Fund for Jiangsu Provincial Commission of Health and Family Planning

the Haiyan Project of Lianyungang

the National Key R&D Program of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3