Development of a multi-arm polyrotaxanes modified mesoporous silica-coated gold nanoplatform for protecting endothelial progenitor cells against high glucose environment

Author:

Cao Duanwen1,Zuo Huihua2,Jiang Mingjin2,Huang Yiteng2,Li Liang3,Lin Fengxia3ORCID,Liu Yue4

Affiliation:

1. Clinical Trials Research Centre, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.

2. Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.

3. Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518133, China.

4. Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.

Abstract

Recent study reported that endothelial progenitor cells (EPCs) have potential to treat diabetic macroangiopathy. High glucose environment of diabetes can affect the adhesion of EPCs by decreasing the expression of CXC chemokine receptor 4 (CXCR4) and affect the proliferation of EPCs by decreasing the expression of miR-126. The results showed that the cytotoxicity of GNR@MSNs@PEI to EPCs was significantly lower than PEI; the temperature of GNR@MSNs@PEI solution can be controlled between 38–40°C under 808 nm laser irradiation. 25.67 µg of pcDNA3.1-GFP-CXCR4 and 5.36 µg of FITC-miR-126 could be loaded in 1 mg of GNR@MSNs@PEI; GNR@MSNs@PEI has gene transfection almost the same as Lipofectamine 3000. Subsequent in vitro studies showed that pcDNA3.1-GFP-CXCR4 and miR-126 loaded GNR@MSNs@PEI can significantly increase the adhesion and proliferation and decrease the apoptosis of EPCs treated with high glucose under 808 nm laser irradiation. In conclusion, nano-carriers (GNR@MSNs@PEI) with high pcDNA3.1-CXCR4 and miR-126 loading capacity, high biocompatibility, well cell internalization, and controllable release ability were constructed to transfer CXCR4 expression plasmid (pcDNA3.1-CXCR4) and miR-126 into EPCs efficiently. Further in vitro studies indicated that pcDNA3.1-CXCR4 and miR-126-loaded GNR@MSNs@PEI could protect EPCs against high glucose-induced injury.

Funder

Shenzhen Fundamental Research Program

the Science and Technology Program of Health Commission of Jiangxi Province

the Natural Science Foundation of Jiangxi Province

National Natural Science Foundation of the People’s Republic of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3