Clopidogrel eluting electrospun polyurethane/polyethylene glycol thromboresistant, hemocompatible nanofibrous scaffolds

Author:

Shitole Ajinkya A1,Giram Prabhanjan S23,Raut Piyush W1,Rade Priyanka P23,Khandwekar Anand P4ORCID,Sharma Neeti1ORCID,Garnaik Baijayantimala23

Affiliation:

1. Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India

2. Polymer Science and Engineering Division, CSIR- National Chemical Laboratory, Pune, India

3. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India

4. School of Engineering, Ajeenkya DY Patil University (ADYPU), Pune, India

Abstract

Biomaterials used as blood-contacting material must be hemocompatible and exhibit lower thrombotic potential while maintaining hemostasis and angiogenesis. With the aim of developing thromboresistant, hemocompatible nanofibrous scaffolds, polyurethane/polyethylene glycol scaffolds incorporated with 1, 5, and 10 wt% Clopidogrel were fabricated and evaluated for their physiochemical properties, biocompatibility, hemocompatibility, and antithrombotic potential. The results of physicochemical characterization revealed the fabrication of nanometer-sized scaffolds with smooth surfaces. The incorporation of both polyethylene glycol and Clopidogrel to polyurethane enhanced the hydrophilicity and water uptake potential of polyurethane/polyethylene glycol/Clopidogrel scaffolds. The dynamic mechanical analysis revealed the enhancement in mechanical strength of the polyurethane/polyethylene glycol scaffolds on incorporation of Clopidogrel. The polyurethane/polyethylene glycol/Clopidogrel scaffolds showed a tri-phasic drug release pattern. The results of hemocompatibility assessment demonstrated the excellent blood compatibility of the polyurethane/polyethylene glycol/Clopidogrel scaffolds, with the developed scaffolds exhibiting lower hemolysis, increased albumin and plasma protein adsorption while reduction in fibrinogen adsorption. Further, the platelet adhesion was highly suppressed and significant increase in coagulation period was observed for Clopidogrel incorporated scaffolds. The results of cell adhesion and cell viability substantiate the biocompatibility of the developed nanofibrous scaffolds with the HUVEC cell viability on polyurethane/polyethylene glycol, polyurethane/polyethylene glycol/Clopidogrel-1, 5, and 10% at day 7 found to be 12.35, 13.36, 14.85, and 4.18% higher as compared to polyurethane scaffolds, and the NIH/3T3 cell viability found to be 35.27, 70.82, 36.60, and 7.95% higher as compared to polyurethane scaffolds, respectively. Altogether the results of the study advocate the incorporation of Clopidogrel to the polyurethane/polyethylene glycol blend in order to fabricate scaffolds with appropriate antithrombotic property, hemocompatibility, and cell proliferation capacity and thus, might be successfully used as antithrombotic material for biomedical application.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3