Preparation and characterization of polycaprolactone–polyethylene glycol methyl ether and polycaprolactone–chitosan electrospun mats potential for vascular tissue engineering

Author:

Sultana Tamanna1,Amirian Jhaleh2ORCID,Park Chanmi2,Lee Seung Jin3,Lee Byong-Taek12ORCID

Affiliation:

1. Department of Regenerative Medicine, College of Medicine, Soonchunhyang University 366-1, Ssangyoung-Dong, Cheonan City, ChungCheonNam-Do, Republic of Korea

2. Institute of Tissue Regeneration, Soonchunhyang University 366-1, Ssangyoung-Dong, Cheonan City, ChungCheonNam-Do, Republic of Korea

3. Department of Thoracic and Cardiovascular Surgery, Soonchunhyang University Hospital, 31, 6-gil, Cheonan City, ChungCheonNam-Do, Republic of Korea

Abstract

Recently, natural polymers are frequently comingled with synthetic polymers either by physical or chemical modification to prepare numerous tissue-engineered graft with promising biological function, strength, and stability. The aim of this study was to determine the efficiency for vascular tissue engineering of two distinctly different mats, one that comprised polycaprolactone–polyethylene glycol methyl ether and other that comprised polycaprolactone–chitosan. Nano/microfibrous mats prepared from electro-spinning were characterized for fiber diameter, porosity, wettability, and mechanical strength. Biological efficacy on both biodegradable mats was assessed by rat bone marrow mesenchymal stem cells, and polycaprolactone–polyethylene glycol methyl ether showed feasibility for use as an inner layer by inducing endothelial-specific gene expression and polycaprolactone–chitosan as an outer layer on dual layered without sacrificing tensile strength, small-diameter blood vessels. Therefore, scaffolds fabricated from this research could be potential sources for tissue-engineered vascular graft and could also overcome the well-known drawbacks, such as thrombogenicity and stenosis, in managing vascular disease.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3