Nano zinc oxide decorated latex drainage: A promising antibacterial material prevent retrograde infection associated with drainage

Author:

Tao Li123ORCID,Chao Zhang123,Jingyu Jia123,Xigao Cheng123ORCID

Affiliation:

1. Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China

2. Institute of Orthopedics of Jiangxi Province, Nanchang, China

3. Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China

Abstract

Surgical site infections (SSI) represent a considerable burden for healthcare systems. Studies show retrograde infection of the drainage tube is an important cause of surgical site infection. To this end, Surgeons work in various ways to reduce the incidence of retrograde infections. Fast progress in nanoscience and nanotechnology is revolutionizing the field of medicine to improve the quality of life due to the myriad of applications stemming from their unique properties, including the antibacterial activity against pathogens. Herein, we investigate the antibacterial properties of a novel nanomaterial composed of nano zinc oxide-decorated latex drainages. These materials were produced by the hydrothermal method and characterized through field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and DLS (Dynamic light scattering techniques). Then inductively coupled plasma mass spectrometry (ICP-MS) measurements showed that nano zinc oxide on the surface of the latex drainages showed a gradient release process. The antimicrobial activity of nano zinc oxide -decorated latex drainage was evaluated against E. coli and Staphylococcus aureus, the main bacteriological agent in the retrograde infection associated with drainage. The results showed that slices and rods nano zinc oxide (SAR-ZnO) drainage tubes had the best antibacterial properties both in vivo and in vitro. In addition, the cell viability assay demonstrated that nano zinc oxide-decorated latex drainages exerted good biocompatibility. Therefore, SAR-ZnO drainage tubes can be a perfect nanomaterial against the retrograde infection associated with drainage.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3