Effects of the Degree of Deacetylation on the Physicochemical Properties and Schwann Cell Affinity of Chitosan Films

Author:

Wenling Cao1,Duohui Jing1,Jiamou Li1,Yandao Gong1,Nanming Zhao1,Xiufang Zhang2

Affiliation:

1. Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, PR China

2. Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, PR China,

Abstract

Chitosan is a potential material for the preparation of nerve repair conduits. In order to find a better chitosan for the application in peripheral nerve regeneration, the effects of the degree of deacetylation (DD) on the physicochemical properties and Schwann cell affinity of chitosan films have been evaluated. Six kinds of chitosan samples with similar molecular weight, but various DD in a range from 70.1 to 95.6% were prepared from one stock chitosan material and fabricated into films. X-ray diffraction analysis showed that there were more crystalline regions in the higher DD chitosan films. Swelling and mechanical property measurements revealed that the swelling index of chitosan films decreased and their elastic modulus and tensile strength increased with the increase in DD. The adsorption amount of fibronectin and laminin on chitosan films was measured by means of enzyme-linked immunosorbent assay (ELISA). Culture of adult rat Schwann cells on the films showed that the chitosan films with higher DD provided better substrata for Schwann cell spreading and proliferation. In conclusion, DD of chitosan plays an important role in their physicochemical properties and affinity with Schwann cells. The results suggest that chitosan with a DD higher than 90% is considered as a promising material for application in peripheral nerve regeneration.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3