Platelet-rich plasma gel composited with nondegradable porous polyurethane scaffolds as a potential auricular cartilage alternative

Author:

Wang Zhongshan1,Qin Haiyan2,Feng Zhihong1,Zhao Yimin1

Affiliation:

1. State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China

2. Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China

Abstract

Total auricular reconstruction is still a challenge, and autologous cartilage transplant is the main therapy so far. Tissue engineering provides a promising method for auricular cartilage reconstruction. However, although degradable framework demonstrated excellent initial cosmetic details, it is difficult to maintain the auricular contour over time and the metabolites tended to be harmful to human body. In this study, biocompatible and safe nondegradable elastic polyurethane was used to make porous scaffold in specific details by rapid prototyping technology. Platelet-rich plasma contains fibrin and abundant autologous growth factors, which was used as cell carriers for in vitro expanded cells. When crosslinking polyurethane framework, platelet-rich plasma and cells together, we successfully made polyurethane/platelet-rich plasma/cell composites, and implanted them into dorsal subcutaneous space of nude mice. The results showed that this method resulted in more even cell distribution and higher cell density, promoted chondrocyte proliferation, induced higher level expressions of aggrecan and type II collagen gene, increased content of newly developed glycosaminoglycans, and produced high-quality cartilaginous tissue. This kind of cartilage tissue engineering approach may be a potential promising alternative for external ear reconstruction.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3