DPSCs seeded in acellular nerve grafts processed by Myroilysin improve nerve regeneration

Author:

Qiao Wenlan12,Lu Lu1,Wu Guangxue1,An Xianglian2,Li Dong3,Guo Jing1ORCID

Affiliation:

1. Department of Orthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, PR China

2. Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, PR China

3. Department of Cryomedicine Lab, Qilu Hospital of Shandong University, Jinan, PR China

Abstract

Since synthetic nerve conduits do not exhibit ideal regeneration characteristics, they are generally inadequate substitutes for autologous nerve grafts in the repair of long peripheral nerve defects. To resolve this problem, in this study, a nerve regeneration acellular nerve graft (ANG) with homologous dental pulp stem cells (DPSCs) was constructed. Xenogeneic ANG was processed by Myroilysin to completely remove cells and myelin sheath, while preserving extracellular matrix (ECM) microstructure of the natural nerve. The study revealed that ANG could support cell attachment and proliferation and did not stimulate a vigorous host rejection response. After inoculation of rabbit DPSCs (r-DPSCs) onto ANG, cells were observed to align along the longitudinal axis of the acellular nerve matrix (ANM) and persistently express NGF and BDNF. Undifferentiated r-DPSCs also presented glial cell characteristics and promoted nerve regeneration after transplantation in vivo. We repaired 1 cm purebred New Zealand White Rabbits sciatic nerve defects using this nerve graft construction, and nerve gap regeneration was indicated by electrophysiological and histological analysis. Therefore, we conclude that the combination of an ANG processed by Myroilysin with DPSCs providing a microenvironment that increases nerve regeneration for repairing peripheral nerve defects.

Funder

Natural Science Foundation of Shandong Province

Science and Technology Foundation of Shandong Province

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3