Effects of releasing recombinant human growth and differentiation factor-5 from poly(lactic-co-glycolic acid) microspheres for repair of the rat degenerated intervertebral disc

Author:

Yan Jihong1,Yang Shu1,Sun Huaimei1,Guo Duo1,Wu Bo1,Ji Fengqing1,Zhou Deshan1

Affiliation:

1. Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China

Abstract

Purpose: The objective of this study was to investigate the therapeutic potential of poly(lactic- co-glycolic acid) (PLGA) microspheres loaded with recombinant human growth and differentiation factor-5 (rhGDF-5) on the disc degeneration induced by needle puncture in a rat caudal disc model. Methods: The rhGDF-5-loaded PLGA microspheres were prepared by the water-oil-water double-emulsion solvent evaporation method, and release kinetics was determined over 42 days. Rats that underwent 21-G needle puncture at rat tail discs were injected with rhGDF-5/PLGA microspheres at four weeks after needle injury. At eight weeks after the injection, disc height, glycosaminoglycans content, and DNA content of the discs were evaluated. In addition, gene expression analysis of aggrecan, collagen type I, and collagen type II in the rat nucleus pulposus was measured by real-time polymerase chain reaction. Rat discs were also assessed by histology using hematoxylin and eosin stain. Results: Encapsulation of rhGDF-5 in PLGA microspheres guaranteed a sustained release of active rhGDF-5 for more than 42 days. The injection of GDF-5/PLGA microspheres resulted in a statistically significant restoration of disc height ( p < 0.01), improvement of sulfated glycosaminoglycan ( p < 0.05), DNA content ( p < 0.05), and significantly increased mRNA levels of collagen type II ( p < 0.01), and the differentiation index (the ratio of collagen type II to collagen type I, p < 0.01). In addition, rhGDF-5/PLGA microspheres treatment also improved histological changes induced by needle puncture. Conclusions: The results of this study suggest that injection of rhGDF-5 loaded in PLGA microspheres into rat tail discs may be as a promising therapy strategy to regenerate or repair the degenerative disc.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3