Affiliation:
1. Additive Manufacturing Laboratory, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
2. Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
3. Nova Teb Pars Research Laboratory, Dental Equipment and Bio-material Technology Incubation Center, Tehran, Iran
4. Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada
Abstract
In this study, 3D printing of poly-l-lactic acid (PLLA) scaffolds reinforced with graphene oxide (GO) nanoparticles via Digital Light Processing (DLP) was investigated to mimic bone tissue. Stereolithography is one of the most accurate additive manufacturing methods, but the dominant available materials used in this method are toxic. In this research, a biocompatible resin (PLLA) was synthetized and functionalized to serve the purpose. Due to the low mechanical properties of the printed product with the neat resin, graphene oxide nanoparticles in three levels (0.5, 1, and 1.5 wt%) were added with the aim of enhancing the mechanical properties. At first, the optimum post cure time of the neat resin was investigated. Consequently, all the parts were post-cured for 3 h after printing. Due to the temperature-dependent structure of GO, all samples were placed in an oven at 85°C for different time periods of 0, 6, 12, and 18 h to increase mechanical properties. The compression test of heat-treated samples reveals that the compressive strength of the printed parts containing 0.5,1, and 1.5% of GO increased by 151,162 ad 235%, respectively. Scaffolds with the designed pore sizes of 750 microns and a porosity of 40% were printed. Surface hydrophilicity test was performed for all samples showing that the hydrophilicity of the samples increased with increasing GO percentage. The degradation behavior of the samples was evaluated in a PBS environment, and it revealed that by increasing GO, the rate of component degradation increased, but the heat treatment had the opposite effect and decreased the degradation rate. Finally, besides improving biological properties, a significant increase in mechanical properties under compression can introduce the printed scaffolds as a suitable option for bone implants.
Funder
Tarbiat Modares University
Subject
Biomedical Engineering,Biomaterials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献