Adjusting the accuracy of PEGDA-GelMA vascular network by dark pigments via digital light processing printing

Author:

Sheng Lin1ORCID,Li Mo1,Zheng Shuxian1,Qi Jian2

Affiliation:

1. Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin, China

2. School of Mechanical Engineering, Tianjin University of Technology and Education, China

Abstract

Vascularization is one of the most important factors greatly influencing scaffold regeneration. In this study, a precise network of hollow vessels was printed by digital light processing (DLP) with poly(ethylene glycol) diacrylate (PEGDA)/gelatin-methacryloyl (GelMA), and dark pigmentation absorbers were added to ensure printing accuracy. First, the compound bio-inks of the PEGDA-GelMA hydrogel were prepared for direct vascular printing, and a high-precision DLP system was established. Second, the printing effects of three dark absorbers, namely, nigrosin, brilliant black, and brilliant blue, on the x-, y-, and z-axes were studied. By printing models with different densities, it was determined that 0.2% nigrosin, 0.1% brilliant black, and 0.3% brilliant blue had better effects on the x- and y-axes accuracy, and the absorbance of the absorbers played a decisive role in adjusting the accuracy. Additionally, to solve the problem of uneven curing on the upper and lower surfaces caused by the addition of an absorber with high absorbance, a model of the difference in curing width between the upper and lower surfaces of a unit-layer slice based on high-absorbance absorbers was established, and the reference value for the slice thickness was calculated. Third, the biological and mechanical properties of the bio-inks were verified with scanning electron microscopy and Fourier transform infrared, and by tensile, swelling, degradation, and cytotoxicity tests on different concentrations of PEGDA-GelMA hydrogel and absorbers. The results showed that 30% PEGDA-7% GelMA/0.1% brilliant black was the optimal preparation to print a hollow vascular network. The error of the printing tube wall and cavity was between 1% and 3%, which demonstrates the high precision of the method. Human umbilical vein endothelial cells were planted in the lumen, and the survival rate achieved 107% on the seventh day, demonstrating the good biocompatibility of the composite hydrogel.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3