Development of a novel meniscal sheet scaffold and its effectiveness for meniscal regeneration in a rabbit defect model

Author:

Ikeda Kuniaki1ORCID,Otsuki Shuhei1,Okuno Nobuhiro1,Sezaki Shunsuke2,Nakagawa Kosuke1,Miyamoto Yuki1,Okamoto Yoshinori1,Wakama Hitoshi1,Okayoshi Tomohiro1,Neo Masashi1

Affiliation:

1. Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan

2. Gunze Limited, Osaka, Japan

Abstract

This study evaluated the biomechanical strength of a novel two-layer meniscal sheet scaffold (MSS) consisting of polyglycolic acid and poly-Llactic acid/caprolactone and investigated meniscal healing using wrapping treatment for meniscal defect model in a rabbit. The ultimate failure load of the MSS was determined using a tensile testing machine, in vitro. A 2-mm cylindrical defects were created at the medial meniscus of rabbit knees (n = 40). Each knee was assigned to one of two groups. The defect group was not treated and the MSS group underwent wrapping treatment with MSS. Menisci were harvested at 2, 4, 8, and 12 weeks post-implantation. The regenerated meniscus and defect size were evaluated using macrophotographs. Ishida scores for regenerated tissue were determined using Safranin-O/Fast Green staining. Immunohistochemical analysis of Ki-67 for cell proliferation, anti-type I and II collagen antibodies for structure of the regenerated tissue was elucidated. Medial femoral cartilage was stained with Safranin-O/Fast Green and evaluated with Osteoarthritis Research Society International (OARSI) scores. The strength of MSS was maintained over 90% from initial time point to 4 weeks after hydrolysis and over 60% of the strength remained at 8 weeks. The surface area of the meniscus was larger and the defect size smaller in the MSS group than in the defect group at 8 and 12 weeks. Ishida scores revealed that the MSS group improved significantly compared to that of the defect group at all postsurgery time points evaluated. Ki-67 positive cell ratio was significantly higher in the MSS group. OARSI score of the defect group was significantly higher and the defect group showed progressive degeneration in the articular cartilage from 8 to 12 weeks. Overall, wrapping meniscus defects with MSS was useful for accelerating meniscal healing from an early stage and beneficial for tissue regeneration and promoting extracellular matrix maturation.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3