Iodinated poly(p-dioxanone) as a facile platform for X-ray imaging of resorbable implantable medical devices

Author:

Zhao Fan12,Xu Haiyan12,Xue Wen12,Li Yan12,Sun Jing3,Wang Fujun12ORCID,Jiang Guansen4,Li Lingchen4,Wang Lu12

Affiliation:

1. College of Textiles, Donghua University, Shanghai, China

2. Key laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Songjiang, Shanghai, China

3. Department of Pediatric Cardiology of Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

4. Hangzhou Rejoin Mastin Medical Device Co., Ltd, Hangzhou, China

Abstract

Currently, implantable fibrous medical devices still suffer from invisibility under current clinical imaging techniques. To address this problem, 2, 3, 5-triiodobenzoic acid (TIBA) was recruited as a contrast agent, and then a set of iodinated poly( p-dioxanone) (PPDO) fibers was fabricated via melt-spinning hybrid blends of PPDO with TIBA (PPDO/TIBA). The impact of TIBA content on the rheological behavior of blends was evaluated firstly. The physical, chemical, and thermal properties of PPDO/TIBA fibers were investigated accordingly by SEM, FTIR, DSC, and TGA. Moreover, the radiopaque property of PPDO/TIBA hybrid fibers as a potential radio-opacifying platform for medical devices was verified in vitro and in vivo. Finally, the accumulated release results of the hybrid fibers during in vitro degradation indicate the continual X-ray visibility of the hybrid fibers maintains for 22 days. This intriguing iodinated platform may pave the way for constructing fibrous materials with in-situ X-ray tracking property.

Funder

Chinese Universities Scientific Fund

111 project

Fundamental Research Funds for the Central Universities

Science and Technology Support Program of Shanghai

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3