In vitro apatite formation on porous anodic alumina induced by a phosphorylation treatment

Author:

Li Xiaohong1,Ni Siyu12,Webster Thomas J23

Affiliation:

1. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P. R. China

2. Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA

3. Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

In this study, a phosphorylation treatment of porous anodic alumina (PAA) was performed by wet impregnation in phosphoric acid and a subsequent heat treatment. The PAA and phosphorylated PAA specimens were analyzed using a field emission scanning electron microscope, an energy-dispersive X-ray spectrometer, and Fourier transform infrared spectroscopy. The apatite-forming ability of the phosphorylated PAA was evaluated by soaking the specimens in simulated body fluid for 1, 3, and 7 days. The surface microstructures and chemical property changes after soaking in simulated body fluid were again characterized by field emission scanning electron microscope, energy-dispersive X-ray spectrometer, and Fourier transform infrared spectroscopy. Results of this study demonstrated that the functional –PO4 groups introduced onto the PAA surface dramatically promoted the deposition of bone-like apatite on PAA. The results from this study indicated that the phosphorylation treatment of anodic alumina is an effective method for inducing bone-like apatite formation, and this phosphorylated PAA can be a promising candidate to be used as bioactive surface coatings on implant metals and alloys for orthopedic and dental applications.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3