Effects of dexamethasone-loaded PLGA microspheres on human fetal osteoblasts

Author:

Dawes GJS1,Fratila-Apachitei LE1,Necula BS1,Apachitei I1,van Leeuwen JPTM2,Duszczyk J1,Eijken M2

Affiliation:

1. Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

2. Department of Internal Medicine, Erasmus Medical Center, Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands

Abstract

Integration of a drug delivery function into implantable medical devices enables local release of specific bioactives to control cells–surface interactions. One alternative to achieve this biofunctionality for bone implants is to incorporate particulate drug delivery systems (DDSs) into the rough or porous implant surfaces. The scope of this study was to assess the effects of a model DDS consisting of poly(D,L-lactide-co-glycolide) (PLGA) microspheres loaded with an anti-inflammatory drug, dexamethasone (DXM), on the response of Simian Virus-immortalized Human Fetal Osteoblast (SV-HFO) cells. The microspheres were prepared by the oil-in-water emulsion/solvent evaporation method, whereas cells response was investigated by Alamar Blue test for viability, alkaline phosphatase (ALP) activity for differentiation, and Alizarin Red staining for matrix mineralization. Cell viability was not affected by the presence of increased concentrations of polymeric microspheres in the culture media. Furthermore, in the cultures with DXM-loaded microspheres, ALP activity was expressed at levels similar with those obtained under osteogenic conditions, indicating that DXM released from the microsphere-stimulated cell differentiation. Matrix mineralization occurred preferentially around the DXM-loaded microspheres confirming that the released DXM could act as osteogenic supplement for the cells. These in vitro findings suggest that a particulate PLGA-DXM DDS may actually provide dual, anti-inflammatory and osteogenic functions when incorporated on the surface of bone implants.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3