Core-shell poly(lactide-co-ε-caprolactone)-gelatin fiber scaffolds as pH-sensitive drug delivery systems

Author:

Sang Qingqing1,Li Heyu1,Williams Gareth2,Wu Huanling1,Zhu Li-Min13

Affiliation:

1. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China

2. UCL School of Pharmacy, University College London, London, UK

3. Key Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, Donghua University, Shanghai, China

Abstract

Dual-drug-loaded pH-responsive fiber scaffolds were successfully prepared by coaxial electrospinning. These were designed with the aim of being sutured into the resection site after tumor removal, to aid recovery and prevent cancer recurrence. The shell was made up of a mixture of gelatin and sodium bicarbonate (added to provide pH-sensitivity), and was loaded with the anti-inflammatory drug ciprofloxacin; the core comprised poly(lactide-co-ε-caprolactone) with the chemotherapeutic doxorubicin hydrochloride. Scanning electron microscopy revealed most fibers were smooth and homogeneous. Transmission electron microscopy demonstrated the presence of a clear core/shell structure. The fiber scaffolds were further characterized using infrared spectroscopy and X-ray diffraction, which proved that both drugs were present in the fibers in the amorphous form. The gelatin shells were cross-linked with glutaraldehyde to enhance their stability, and water contact angle measurements used to confirm they remained hydrophilic after this process, with angles between 10 and 35°. This is important for onward applications, since a hydrophilic surface is known to encourage cell proliferation. During in vitro drug release studies, a rapid and acid-responsive release of ciprofloxacin was seen, accompanied by sustained and long-term doxorubicin release. Both the release profiles and the mechanical strength of the fibers can effectively be tuned through the sodium bicarbonate content of the fibers: for instance, the break stress varies from 2.00 MPa to 2.57 MPa with an increase in sodium bicarbonate content. The pH values of aqueous media exposed to the scaffolds decrease only slightly, by less than 0.5 pH units, over the two-month timescale, suggesting that only minimal fiber degradation occurs during this time. The fiber scaffolds also have good biocompatibility, as revealed by in vitro cytotoxicity experiments. Overall, our results demonstrate that the novel scaffolds reported here are promising pH-sensitive drug delivery systems, and may be candidates for use after tumor resection surgery.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3