Poly(ethylene glycol) induces cell toxicity in melanoma cells by producing a hyperosmotic extracellular medium

Author:

Postic Ivana1ORCID,Sheardown Heather1ORCID

Affiliation:

1. McMaster University, Hamilton, Ontario, Canada

Abstract

Poly(ethylene glycol) is a polymer that is widely used as a biomaterial and has been approved in a host of applications. While generally viewed as inert, recent studies with poly(ethylene glycol) suggest that it may have some effects on cells and tissues, making it potentially attractive as a therapeutic agent. In this study, the effect of poly(ethylene glycol) on the cell viability, membrane transport and apoptotic markers of metastatic melanoma cells was examined. The data were combined with observed effects of the polymer on the cell media, including osmolality and viscosity, in order to elucidate any structure-function relationship between the polymer and cells. It was observed that poly(ethylene glycol) reduced the cellular viability of A375 cells, and that the effect was dependent on poly(ethylene glycol) molecular weight and concentration. The mechanism was highly correlated with changes in the osmolality of the cell medium, which is determined by the inherent structure of poly(ethylene glycol), and in particular the ethylene oxide units. This mechanism was specific to poly(ethylene glycol) and was not observed with the similar linear, hydrophilic polymer poly(vinyl pyrrolidone). Overall, the data suggest that poly(ethylene glycol) and poly(ethylene glycol)-like compounds have a distinct effect on cellular activity, presumably mediated in part by their osmotic effects, supporting the further investigation of these polymers as pharmaceutically active compounds.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3