Nano-injectable pH/NIR-responsive hydrogel for chemo-photothermal synergistic drug delivery

Author:

Zhao Qian1,Yue Xu1,Miaomiao Liu2,Yanming Wang2,Wu Guolin1ORCID

Affiliation:

1. Key Laboratory of Functional Polymer Materials of MOE, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China

2. College of Pharmacy, Nankai University, Tianjin, China

Abstract

Conventional cancer treatments are highly toxic and ineffective; therefore, it is essential to develop less toxic and minimally invasive treatment methods. A pH/Near Infra-red (NIR) dual-responsive, nano-injectable smart hydrogel was fabricated by incorporating CuS nanoparticles into the hydrogel networks formed by a random copolymer of N-isopropylacrylamide (NIPAM) and double-bond functionalized uracil. Microstructural characterizations of synthesized polymer and hydrogels were carried out using transmission electron microscope (TEM), scanning electron microscope (SEM), nuclear magnetic resonance (NMR) and fourier transform infrared spectroscopy (FT-IR). Multiple hydrogen bonding interactions between uracils function as physical cross-linking points to construct the network structure of the polymeric nanogel without the addition of additional cross-linking agents, ensuring the material's safety. The amino group on the structure of uracil gives the uracil-modified polymeric hydrogel excellent pH responsiveness. Notably, as a temperature-responsive material, poly (N-isopropylacrylamide) (PNIPAM) nanogel solution can achieve in situ gel formation (within 100 s at 37°C) above its lower critical solution temperature (LCST), granting injectability to polymeric solutions. Moreover, using a hierarchical construction strategy, the variable loading of DOX and CuS was achieved. First, a heterogeneous system was created by encapsulating doxorubicin (DOX) inside the nanogel via hydrophobic and π-π stacking interactions, followed by the introduction of CuS nanoparticles as photosensitizers outside of the nanogels. Due to the presence of CuS nanoparticles, the gel is able to convert NIR light into local heat to enhance the destruction of tumor cells while simultaneously achieving rapid in situ gel formation. The in situ-forming hydrogel showed promising tissue biocompatibility. The in vitro antitumor test demonstrated the capacity of the nanocomposite hydrogel for chemo-photothermal synergistic therapy. Therefore, this prepared platform has the potential to become a safe and effective, smart-responsive drug carrier for chemotherapy and PTT synergy, a minimally invasive material for tumor treatment.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3