In Vitro and in Vivo Biodurability of a Compliant Microporous Vascular Graft

Author:

Edwards A.1,Carson R. J.1,Szycher M.1,Bowald S.2

Affiliation:

1. CardioTech International Ltd., Tarvin Sands Complex, Tarvin, Cheshire, UK

2. Associate Professor of Surgery, University Hospital, Upsalla, Sweden

Abstract

Polyurethanes have unique mechanical and biologic properties that make them ideal for many implantable devices. However, certain polyurethanes are affected by some in vivo degradation mechanisms. For example, poly(ester)urethanes are subject to hydrolytic degradation and are no longer used in long-term implanted devices. Poly(ether)urethanes while hydrolytically stable, are subject to oxidative degradation in several forms, including environmental stress cracking and metal ion oxidation. We have developed a second-generation poly(carbonate)urethane with superior biostability. This material has been fabricated by our patented method into small diameter microporous vascular grafts. We evidenced the biodurability of our vascular graft by in vitro qualification tests which compared the poly(carbonate)urethane with a traditional poly(ether)urethane. This poly(carbonate)urethane graft has also proven to be biodurable in in vivo experimental implants up to twenty months duration with no evidence of hydrolysis or Environmental Stress Cracking (ESC).

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3