Advances in Prosthetic Heart Valves: Fluid Mechanics of Aortic Valve Designs

Author:

Yoganathan Ajit P.1,Woo Yi-Ren1,Sung Hsing-Wen1,Jones Michael2

Affiliation:

1. Cardiovascular Fluid Dynamics Laboratory School of Chemical Engineering Georgia Institute of Technology Atlanta, GA 30332-0100

2. Surgery Branch National Heart, Lung and Blood Institute National Institutes of Health Bethesda, MD 20892

Abstract

The in vitro hemodynamic characteristics of a variety of mechanical and tissue heart valve designs used during the past two decades were investigated in the aortic position under pulsatile flow conditions. The following valve designs were studied: Starr-Edwards ball and cage (model 1260), Björk-Shiley tilting disc (convexo-concave model), Medtronic-Hall tilting disc, St. Jude Medical bileaflet, Carpentier-Edwards porcine and pericardial (models 2625, 2650 and 2900), Hancock porcine (models 250 and 410) and Ionescu-Shiley standard pericardial. The Starr-Edward ball and cage, Björk-Shiley tilting disc, Carpentier-Edwards porcine (model 2625) and Ionescu-Shiley standard pericardial valves were designed prior to 1975, while the Medtronic-Hall tilting disc, St. Jude Medical bileaflet, Hancock porcine (model 250), Hancock II porcine (model 410), Carpentier-Edwards porcine (model 2650) and Carpentier-Edwards pericardial (model 2900) valves were designed after 1975. The pressure drop results indicated that the valves designed prior to 1975 had performance indices of 0.30 to 0.45, whereas the valves designed after 1975 had performance indices of 0.40 to 0.70. The regurgitant volumes were higher for the mechanical designs (5.0 to 11.0 cm3/beat) compared to the tissue bioprostheses (1.0 to 5.0 cm3/ beat). Two-dimensional laser Doppler anemometry studies indicated that the valves designed after 1975 tended to create more centralized flow fields, with reduced levels of turbulent shear stresses. However, none of the current valve designs is ideal: they all create areas of stasis and/or regions of low velocity reverse flow; and regions of elevated turbulent shear stresses that are capable of causing sub-lethal and/or lethal damage to the formed elements of blood.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3