A novel strategy against hepatitis B virus: Glycyrrhetnic acid conjugated multi-component synergistic nano-drug delivery system for targeted therapy

Author:

Guan QingXia1ORCID,Zhou XiaoYing1,Yang FangFang1,Zhang Xue1,Wang YanHong1,Li WeiNan1,Li XiuYan1

Affiliation:

1. Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China

Abstract

It is well known that Glycyrrhetnic acid (GA) has significant liver-targeting and anti-inflammatory effects. Syringopicroside (SYR) and Hydroxytyrosol (HT), the active components of the Chinese herb Syringa oblata Lindl, have earned great reputation for their potential in preventing or treating viral hepatitis type B. Therefore, we loaded SYR and HT into GA-conjugated PEG-PLGA, so that they could target the liver in additional to exerting their own pharmacological effects in a synergistic. However, the in vivo targeting and the low bioavailability of SYR and HT pose a huge challenge. Therefore, we synthesized GA-conjugated multi-component nano-drug delivery system (SH-GPP). SH-GPP had a regular spherical shape with a uniform size distribution of 110.5 ± 3.18 nm. We further evaluated the effects of SH-GPP in vitro and in vivo. In the in vivo experiment, we evaluated the following parameters: the serum ALT and AST values; liver tissue homogenate MDA and SOD; HE staining of the pathological liver sections; and the liver coefficient. In the in vitro studies, the following parameters were evaluated: cellular uptake of SH-GPP; wound healing/scratch assay; cellular apoptosis; cell cycle; HBsAg; and HBeAg content. SH-GPP had better anti-hepatitis B effect than Syringopicroside and hydroxytyrosol (SH) and NPP alone. The targeting ability of GA enabled HT and SYR in GPP to reach the liver accurately, and played a synergistic role to maximize their therapeutic effects. This study provides a novel strategy against hepatitis B virus, and also provides a feasible scheme for improving the low bioavailability of the active components of traditional Chinese medicine.

Funder

The 2017 Harbin application technology and development project (youth reserve talent class A

Heilongjiang Provincial Natural Science Foundation

The Science and Technology Research Project of Heilongjiang Provincial Education Department

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3