Phenolated alginate-collagen hydrogel induced chondrogenic capacity of human amniotic mesenchymal stem cells

Author:

Saghati Sepideh12ORCID,Rahbarghazi Reza13ORCID,Baradar Khoshfetrat Ali2,Moharamzadeh Keyvan4,Tayefi Nasrabadi Hamid12ORCID,Roshangar Leila2

Affiliation:

1. Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2. Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

3. Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

4. Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran

Abstract

Horseradish peroxidase (HRP)-catalyzed hydrogels are considered to be an important platform for tissue engineering applications. In this study, we investigated the chondrogenic capacity of phenolated (1.2%) alginate-(0.5%) collagen hydrogel on human amniotic mesenchymal stem cells after 21 days. Using NMR, FTIR analyses, and SEM imaging, we studied the phenolation and structure of alginate-collagen hydrogel. For physicochemical evaluations, gelation time, mechanical properties, swelling, and degradation rate were assessed. The survival rate was monitored using the MTT assay and DAPI staining. Western blotting was performed to measure the chondrogenic differentiation of cells. NMR showed successful phenolation of the alginate-collagen hydrogel. FTIR exhibited the interaction between the functional groups of collagen with phenolated alginate. SEM showed the existence of collagen microfibrils in the alginate-collagen hydrogel. Compared to phenolated alginate, the addition of collagen increased hydrogel elasticity by 10%. Both swelling rate and biodegradability were reduced in the presence of collagen. We noted an increased survival rate in phenolated alginate-collagen compared to the control cells (p < 0.05). Western blotting revealed the increase of chondrocyte-associated proteins such as SOX9 and COL2A1 in phenolated-alginate-collagen hydrogels after 21 days. These data showed that phenolated alginate-collagen hydrogel is an appropriate 3 D substrate to induce chondrogenic capacity of human mesenchymal stem cells.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3