Long-term antibacterial activity of a composite coating on titanium for dental implant application

Author:

Cheng Yicheng1ORCID,Mei Shenglin2,Kong Xiangwei1,Liu Xianghui1,Gao Bo3,Chen Bo1,Wu Jiang3

Affiliation:

1. Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China

2. Department of Prothodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an, China

3. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China *These authors contributed equally to this work.

Abstract

Dental implants are the most innovative and superior treatment modality for tooth replacement. However, titanium implants still suffer from insufficient antibacterial capability and peri-implant diseases remain one of the most common and intractable complications. To prevent peri-implant diseases, a composite coating containing a new antibacterial agent, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone (BBF) was fabricated on titanium. This study was designed to investigate the antibacterial activity of the composite coating against two common peri-implant pathogens ( Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans). The morphology of the composite coating showed that BBF-loaded poly(L-lactic acid) nanospheres were well-distributed in the pores of the microarc oxidation coating, and cross-linked with each other and the wall pores by gelatin. A release study indicated that the antibacterial coating could sustain the release of BBF for 60 d, with a slight initial burst release occurring during the first 4 h. The antibacterial rate of the composite coating for adhering bacteria was the highest (over 97%) after 1 d and over 90% throughout a 30-day incubation period. The total fluorescence intensity of the composite coating was the lowest, and the vast majority of the fluorescence was red (dead bacteria). Moreover, real-time polymerase chain reaction analysis confirmed that the relative gene expression of the adherent bacteria on the composite coating was down-regulated. It was therefore concluded that the composite coating fabricated on titanium, which showed excellent and relatively long-term antibacterial activity against Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans, is a potential and promising strategy to be applied on dental implants for the prevention of peri-implant diseases.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Science Development Funds of Fourth Military Medical University

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3