C3A Cell Behaviors on Micropatterned Chitosan— Collagen—Gelatin Membranes

Author:

Yu Bo-Yi1,Chou Pei-Hsun1,Chen Chang-An1,Sun Yi-Ming2,Kung Shieh-Shiuh3

Affiliation:

1. Department of Chemical Engineering and Materials Science

2. Department of Chemical Engineering and Materials Science, Graduate School of Biotechnology and Bioinformatics Yuan Ze University, Chungli, Taoyuan, Taiwan 320, Republic of China,

3. Graduate School of Biotechnology and Bioinformatics Yuan Ze University, Chungli, Taoyuan, Taiwan 320, Republic of China

Abstract

The influence of the properties and surface micropatterning of chitosan—collagen—gelatin (CCG) blended membranes on C3A cell's activities has been investigated. It is aimed to guide the cell growth and improve the growth rate in vitro for the application in tissue engineering. Masters with micropatterns are prepared on stainless steel plates by photolithography. The CCG membranes with surface micropatterns are then fabricated by soft lithography and dry—wet phase inversion techniques. The morphology and metabolic activity of cultured C3A cells on the membranes are recorded. When the C3A cells are seeded on the membranes with micropattern spacing of 200 μm width and 80 μm depth, they adhere and aggregate in the groove of the membranes in a few minutes. The aggregated cells migrate up to the surface of the ridge later. This phenomenon, however, is not found on membranes with a micropattern spacing of 500 μm width. In addition, it is demonstrated that the cells on the CCG membranes with micropatterns have higher metabolism and growth rates than those on the flat CCG membranes and on T-flask discs. Micropatterning on the membrane surface can affect the distribution of cells and the communication among cells, and results in a difference in cell adhesion, morphology, mobility, and growth activity.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3