Hemostatic efficacy evaluation of radiation-crosslinked carboxymethyl cellulose granules and kappa-carrageenan/polyethylene oxide/polyethylene glycol dressing in rat bleeding models

Author:

Tranquilan-Aranilla Charito1ORCID,Barba Bin Jeremiah1,Relleve Lorna1,Estacio Maria Amelita2,Abad Lucille1

Affiliation:

1. Chemistry Research Section, Department of Science and Technology, Philippine Nuclear Research Institute, Quezon City, Philippines

2. College of Veterinary Medicine, University of the Philippines Los Banos, Laguna, Philippines

Abstract

Carboxymethyl cellulose granules (CMC-G) and kappa-carrageenan/polyethylene oxide/polyethylene glycol dressing (KPP-D) hemostatic agents, developed through radiation-induced crosslinking and sterilization, were tested in Sprague-Dawley rats using three bleeding models: (a) deep wound with the puncture of femoral artery; (b) aortic puncture; and (c) partial nephrectomy. Dressing and granules were applied in the animals without sustained compression and monitored for a period of 7 or 14 days. Comparisons were made against the commercial chitosan-based agent, Celox (CLX). Primary outcomes observed were bleeding time, the incidence of re-bleeding, animal survival, as well as gross and microscopic changes. The KPP-D group showed the shortest bleeding time for all bleeding models (a. 2.75 ± 0.64, b. 1.63 ± 0.54, c. 2.05 ± 0.62), significantly faster than all the other treatment groups. KPP-D also registered the highest survival rate of 100% with no display of gross abnormalities. CMC-G showed comparable bleeding time with CLX products but had a better survival rate at 98% compared to 96%. The incidence of re-bleeding was greater in CLX treated groups as well as more occurrence of granular adhesions that impacted mortality outcomes. Findings indicate the efficacy of KPP-D in the treatment of severe hemorrhage due to traumatic injury and intraoperative cases, while CMC-G was more suited for external trauma. Complications arising from inflammation, granules deposition, and adhesions emphasize stringent handling and removal of granular hemostat as a critical consideration in hemostat development and testing.

Funder

Philippine Council for Health Research and Development

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3