Affiliation:
1. Chemistry Research Section, Department of Science and Technology, Philippine Nuclear Research Institute, Quezon City, Philippines
2. College of Veterinary Medicine, University of the Philippines Los Banos, Laguna, Philippines
Abstract
Carboxymethyl cellulose granules (CMC-G) and kappa-carrageenan/polyethylene oxide/polyethylene glycol dressing (KPP-D) hemostatic agents, developed through radiation-induced crosslinking and sterilization, were tested in Sprague-Dawley rats using three bleeding models: (a) deep wound with the puncture of femoral artery; (b) aortic puncture; and (c) partial nephrectomy. Dressing and granules were applied in the animals without sustained compression and monitored for a period of 7 or 14 days. Comparisons were made against the commercial chitosan-based agent, Celox (CLX). Primary outcomes observed were bleeding time, the incidence of re-bleeding, animal survival, as well as gross and microscopic changes. The KPP-D group showed the shortest bleeding time for all bleeding models (a. 2.75 ± 0.64, b. 1.63 ± 0.54, c. 2.05 ± 0.62), significantly faster than all the other treatment groups. KPP-D also registered the highest survival rate of 100% with no display of gross abnormalities. CMC-G showed comparable bleeding time with CLX products but had a better survival rate at 98% compared to 96%. The incidence of re-bleeding was greater in CLX treated groups as well as more occurrence of granular adhesions that impacted mortality outcomes. Findings indicate the efficacy of KPP-D in the treatment of severe hemorrhage due to traumatic injury and intraoperative cases, while CMC-G was more suited for external trauma. Complications arising from inflammation, granules deposition, and adhesions emphasize stringent handling and removal of granular hemostat as a critical consideration in hemostat development and testing.
Funder
Philippine Council for Health Research and Development
Subject
Biomedical Engineering,Biomaterials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献